El fractal en el proceso creativo (III)

“A menudo parece que tengo más en común con los matemáticos que con mis colegas artistas”

Maurits Cornelis Escher

mosaico geométrico

La repetición, como estructura de comportamiento que se reitera o de suceso que tiene lugar cíclicamente, es fundamental en el desarrollo de cualquier sistema dinámico (ser vivo, grupo social, organismo, interacción objeto-sujeto). Cuando repetimos un esquema vital o una experiencia, se convierte en una secuencia, en una danza ritual que se itera hasta que asumimos su contenido, lo hacemos propio y nos preparamos para saltar al siguiente ciclo. Cada serie de circunstancias está relacionada con las demás formando una sucesión de hechos, sucesos, vivencias, que se entrecruzan en un tapiz continuo que conforma la identidad.

El fractal y la repetición recursiva como elemento plástico

La obra de Katsushika Hokusai parece detener el tiempo en un instante para mostrar la naturaleza desde un punto de vista minucioso y analítico. Utillizó la xilografía como técnica de expresión para reflejar escenas de la vida cotidiana, de la naturaleza y de contenido sexual, temas propios de la escuela Ukiyo-e en la que desarrolló su obra. El empleo del grabado, técnica que conlleva un proceso de realización muy elaborado, unido a una gran capacidad de observación de la naturaleza, propicia que Hokusai proyecte una visión que descompone el todo en partes.

La reproducción de escenarios naturales a partir de microestructuras que se entretejen creando una organización más compleja hasta obtener un conjunto compuesto, es la base de la geometría fractal. Hokusai parcela la realidad en pequeños fragmentos que, a modo de piezas de un puzzle, se reiteran para reconstruir una nube, una ola o la copa de los árboles. Asigna a cada fracción de realidad un elemento gráfico definitorio que, sumado a los demás, constituye una estructura natural.

La gran ola de Kanagawa. Katsushika Hokusai Viento del Sur, cielo despejado (Fuji rojo). Katsushika Hokusai
Katsushika Hokusai. “La gran ola de Kanagawa” (1830-1833). Xilografía. Metropolitan Museum of Art. Nueva York.
Katsushika Hokusai. “Viento del Sur. Cielo despejado (Fuji rojo)” (1830). Xilografía.
Hodogoya en el Tokaido. Katsushika Hokusai El monte Fuji desde Kanay en el Tokaido. Katsushika Hokusai
Katsushika Hokusai. “Hodogoya en el Tokaido” (1830). Xilografía.
Katsushika Hokusai. “El monte Fuji desde Kanaya en el Tokaido” (1830). Xilografía.

Frantisek Kupka encontró en la abstracción un medio de expresión que le permitía descubrir la verdad universal latente en todos los objetos y seres, objetivo que, a su juicio, debía cumplir todo artista.

La obra de Kupka aúna:

  • Capacidad de síntesis, que utiliza para tender puentes entre campos “opuestos” del conocimiento.
  • Interés por la representación pictórica del movimiento.
  • Una visión microscópica y macroscópica de la existencia que se complementan en un concepto de realidad integral.

Estos principios quedan reflejados en su pintura por medio de un lenguaje abstracto basado en la composición musical y en sus intereses científico-filosóficos. Kupka hace evolucionar las formas musicales, dotadas de un desarrollo espacio-temporal, y las convierte en formas plásticas cinéticas, constituídas por estructuras fluidas que se agrupan entre sí en un grado de complejidad creciente.

En Kupka, esta interconexión entre el lenguaje musical y el visual eleva al fractal a la categoría de elemento plástico. Su abstracción surge de la reiteración de estructuras autosemejantes y autorreferenciales que se desarrollan marcando la composición en cada obra.

fuga en dos colores frantisek kupka amorfa: fuga en dos colores
Frantisek Kupka. “Fuga en dos colores” (1912). Óleo sobre lienzo. 22,9 x 23,4 cms. Museo de Arte Moderno. Nueva York.
Frantisek Kupka. “Amorfa: Fuga en dos colores” (1912). Gouache y tinta sobre papel. 35,9 x 37,8 cms. Museo de Arte Moderno. Nueva York.
alrededor de un punto frantisek kupka elogio frantisek kupka
Frantisek Kupka. “Alrededor de un punto” (1930). Óleo sobre lienzo. 194 x 200 cms. Museo Nacional de Arte Moderno. París.
Frantisek Kupka. “Alrededor de un punto” (1912). Óleo sobre lienzo. 89 x 108 cms. Museo Nacional de Arte Moderno. París.

El ingenio artístico de Maurits Cornelis Escher se nutre de un profundo interés científico, matemático y geométrico. Posee la capacidad de convertir la objetividad del conocimiento científico en una experiencia subjetiva que se traduce en su obra en juegos, enigmas o situaciones “imposibles”, cuyo objetivo es sorprender y retar al espectador.

A través de la relatividad de los puntos de fuga, el empleo de poliedros y simetrías y la ambigüedad en el punto de vista, Escher crea universos “imposibles” en estado de desequilibrio, de mutación. Estos mundos albergan a otros, dentro de los cuales, a su vez, tienen lugar otros nuevos, en una repetición recursiva que tiende a infinito.

Día y noche. Maurits Cornelis Escher Espejo mágico. Maurits Cornelis Escher
Maurits Cornelis Escher. “Día y noche” (1938). Xilografía a fibra en negro y gris, impresa a partir de dos planchas. 67,7 x 39,1 cms.
Maurits Cornelis Escher. “Espejo mágico” (1946). Litografía. 44,5 x 28 cms.

Escher introduce un elemento caótico en la perspectiva y en las estructuras geométricas que le permite establecer nuevas relaciones entre las distintas formas del espacio. Fusionándolas entre sí, altera su identidad y consigue nuevas estructuras formales ficticias, con un resultado novedoso y provocador a nivel perceptivo.

El espacio en Escher es un continuo formado por piezas que, a modo de teselas, encajan sin permitir la existencia de zonas vacías. Estos fragmentos evolucionan del estado de figura al de fondo de manera recurrente, no taxativa, ya que al mutar no abandonan definitivamente su estado anterior; ambos forman parte de su identidad. Esta concepción de la conciencia individual como un proceso consecuente de la interrelación con otros sucesos a varios niveles, es fundamental en la teoría del orden implicado de David Bohm y en la geometría fractal.

Límite cuadrado. Maurits Cornelis Escher Más y más pequeño
Maurits Cornelis Escher. “Límite cuadrado” (1964). Xilografía a fibra en rojo y gris verdoso, impresa a partir de tres planchas. 34 x 34 cms.
Maurits Cornelis Escher. “Más y más pequeño” (1956). Xilografía a contrafibra y a fibra en negro y marrón, impresa a partir de cuatro planchas. 20 x 20 cms.

Yehrin Tong, ilustradora londinense, comparte con M. C. Escher el gusto por las matemáticas, la solución de problemas, la perfección y el orden en el caos. Sus trabajos son ricos en elementos gráficos que se organizan geométricamente en una gran variedad de texturas repetidas de manera recurrente. El resultado es casi monocromo e hiperrealista.

Zebra print. Yehrin Tong Visa infinite music. Yehrin Tong
Yehrin Tong. “Zebra print”.
Yehrin Tong. “Visa infinite music”.
Fractal New Scientist Magazine. Yehrin Tong Maharishi snake print. Yehrin Tong
Yehrin Tong. “Fractal life”. Portada para la revista New Scientist Magazine.
Yehrin Tong. “Maharishi snake print”.

Compone con elementos personalizados que estructura, como piezas de un rompecabezas, ocupando toda la superficie impresa. Para Yehrin Tong cualquier extensión vacía es un espacio negativo que resta potencia expresiva a sus ilustraciones. Su objetivo es proporcionar al espectador de sus trabajos una experiencia sensorial que “deslumbre” y transmita un “zumbido de belleza”.

Enlaces recomendados:
http://www.eschergranada.com/
http://www.mcescher.com/
Galería fotográfica de M. C. Escher
Portfolio de Yehrin Tong
Software para la creación de fractales

¿Por qué el arte se volvió digital?

“Todo cambia nada es”

Heráclito de Éfeso
(540 a.C.-470 a.C.)

rio_que_fluye

Según la física cartesiana, la realidad material se estructura siguiendo un orden explicado. El mundo se manifiesta como un conjunto de objetos permanentes, sustanciales, independientes unos de otros, de modo que cada uno ocupa su región particular del espacio (y del tiempo) sin invadir el lugar en el que están los demás.

Este ordenamiento de la mecánica clásica resulta insuficiente para la Física del siglo XX con la formulación de la teoría de la relatividad y la mecánica cuántica. A nivel subatómico, las partículas presentan dos cualidades la superposición y el entrelazamiento. Gracias a la primera, pueden estar en múltiples lugares al mismo tiempo, por lo que no se puede establecer una localización predecible para un elemento concreto. Por el entrelazamiento, todos los componentes de un sistema se influyen unos a otros sin que sea preciso el contacto entre ellos. Al interactuar con un fenómeno para proceder a su estudio, establecemos un puente de contacto en virtud del cual accedemos a la percepción del entorno en el que sucede en un momento puntual. En este instante, es real puesto que contactamos con sus circunstancias, pero desconocemos qué ocurrirá en el intervalo siguiente. Se trata, por tanto, de una realidad relativa.

La teoría de la relatividad afirma que el tiempo es relativo al observador que lo mide. El movimiento “absoluto” puede determinarse y medirse sin que se precise ninguna referencia externa al objeto que se mueve. Sin embargo, esta posibilidad no existe, puesto que la condición de movimiento está vinculada con el tiempo y éste, a su vez, depende del observador como punto de referencia. No es posible, hasta el momento, llevar a cabo ningún experimento mecánico que pueda revelar el estado de movimiento del observador, que no sería más que un punto de referencia relativo.

El orden implicado

En vista de que una concepción fragmentaria de la realidad no tiene sentido teniendo en cuenta los cambios introducidos por la mecánica cuántica y relativista, el físico estadounidense David Bohm propone su teoría del orden implicado. Según Bohm, el universo es una totalidad no dividida. La existencia está “plegada” dentro de cada región del espacio (y del tiempo). Cualquiera de los elementos o partes que consideremos contiene la estructura plegada del todo y se encuentran intrínsecamente relacionados con la totalidad. En el orden implicado, las partículas y los cuerpos no son más que procesos o sucesos. El protagonismo es de los procesos y no de las cosas; el universo es una totalidad en movimiento. El movimiento real es un flujo cuyos elementos se mezclan de manera similar a las notas de una melodía; no viene definido por el cambio de ubicación en el espacio o en el tiempo, sino por el grado en que los elementos están implicados con los demás y con el todo.

matrioska

Considerado por Bohm como una categoría especial de orden generativo, el orden implicado afecta a la biología, el conocimiento y el orden global de la sociedad y al ser humano como individuo. El orden generativo es inmanente, va intrínsecamente unido a la esencia misma de las cosas. Es de carácter profundo y dinámico, (no caótico) y permite percibir de manera creativa las relaciones entre las formas y las estructuras de la realidad más allá de los límites objetuales.

La teoría del caos

El orden generativo, como productor de sistemas dinámicos, está relacionado con la teoría del caos. Es una rama de las matemáticas y la física que estudia los fenómenos caóticos (dinámicos), es decir, los sistemas que evolucionan con el tiempo. Los elementos caóticos son muy sensibles a los cambios producidos en las condiciones iniciales de su desarrollo, de manera que una pequeña variación en ellas ocasiona efectos imprevisibles.

La teoría del caos no encuentra explicación en las certidumbres geométricas, químicas y biológicas consideradas como válidas hasta entonces. Precisa una reevaluación de las creencias científicas que introduzca la creatividad como propiedad clave en la que todos los sistemas dinámicos se desarrollan y evolucionan.

La geometría fractal

Las formas naturales no se comportan linealmente, son irregulares y fragmentadas. En apariencia, no obedecen a ningún orden establecido. No sólo poseen un grado superior de complejidad, inconcebible por la geometría euclidiana, sino que éste tiene lugar a un nivel solamente explicable por medio de una concepción dinámica de la matemática.

helecho girasol romanescu pavo_real

Se trata de sistemas dinámicos que responden a la geometría fractal desarrollada por el matemático Benoit Mandelbrot. Esta nueva geometría identifica las formas naturales como fractales, es decir, fragmentadas e irregulares. Los objetos fractales son escalantes, su grado de irregularidad y/o fragmentación es igual a cualquier escala; autosemejantes, cada una de sus partes es similar al conjunto total y autorreferenciales, cada parte está constituída por elementos idénticos que forman parte de un orden inferior.

El origen matemático de los fractales se basa en la imposibilidad de comprender de forma correcta lo irregular y fragmentario si se define la dimensión como un número referido a un sistema de coordenadas cartesianas. En el momento en el que se obvian estos condicionantes, puede definirse un concepto de dimensión dinámica, que va cambiando en función de la relación entre el objeto y el observador, denominada dimensión fractal.

Sistemas abiertos

Los fractales son objetos geométricos surgidos cuando en un sistema dinámico se produce una fractura y la estructura, lejos de volverse caótica, encuentra espontáneamente un nuevo orden. Se trata, pues, de sistemas abiertos, ya que son estables a pesar de encontrarse en un estado de no equilibrio.

Cuando en un sistema abierto hay una estrecha interacción entre la estructura por un lado y el flujo de energía y el cambio por otro, se denomina estructura disipativa. Este concepto fue creado por el nobel de química Ilya Prigogine en 1967.

entropiaSi un sistema abierto alcanza un estado alejado del equilibrio, entra en una inestabilidad que puede conducirle a una disyuntiva, a un punto de bifurcación, de manera que, la primera fluctuación que se produzca al azar, determinará el camino que elegirá el sistema para alcanzar de nuevo la estabilidad. Esta perturbación produce un cambio en la microestructura que puede afectar también a la macroestructura. En el caso de que el flujo de energía que atraviesa el sistema ocasione fluctuaciones tan elevadas que éste sea incapaz de disipar la entropía, puede saltar evolucionando a estados de organización superiores, creándose estructuras nuevas y nuevos tipos de orden.

Simbiogénesis

La muestra más evidente de que un organismo está vivo es la función metabólica. El metabolismo es un conjunto de procesos asociados a un flujo constante de materia y energía producido a través de reacciones químicas diversas, que permiten al organismo vivo reparar sus estructuras, generar otras nuevas, destruir las que ya no son útiles y perpetuarse a sí mismo. Por medio de la función metabólica, los organismos vivos se convierten en sistemas abiertos, ya que la circulación de materia y energía es incesante y no funcionan en equilibrio. Es decir, sistemas de dinámica y pautas de organización no lineales.

El concepto de organismo vivo como sistema abierto es básico para la simbiogénesis, teoría evolutiva impulsada por Lynn Margulis. Desde los inicios, los organismos no vivían aislados; aunque estaban dotados de una identidad diferenciadora, interactuaban con su entorno y con otros organismos, permitiendo que el intercambio de material energético fluyera a su interior. Se comportaban como sistemas abiertos con su identidad encerrada dentro de una membrana flexible. Estos flujos e intercambios posibilitaron la formación de nuevas entidades por medio de la simbiosis de organismos previamente independientes que, para Lynn Margulis, constituye “la fuerza evolutiva más poderosa e importante” y prosigue “la vida no conquistó el globo con combates sino con alianzas.”

Conclusiones

Desde Copérnico, el ser humano ha sido testigo del desmoronamiento de diversas certidumbres científicas que le adjudicaban una posición destacada dentro de la naturaleza.

Si quisiéramos definir el cambio del siglo XX al XXI con algo parecido a una expresión matemática, podríamos emplear esta igualdad:

igualdadLos términos de esta expresión han colaborado poderosamente a la “desubjetivación” del ser humano como ente estable y permanente, de manera similar al proceso de desmaterialización de la obra como objeto artístico, iniciado por Marcel Duchamp y continuado por el arte conceptual.

El ser humano y la materia en general han dejado de considerarse organismo y cosa principales, respectivamente, perdiendo su protagonismo unitario en favor de los procesos, los flujos de materia, energía e información en los que participan, que les permiten interactuar con su entorno, sus semejantes, sus diferentes y el universo como totalidad. Ni siquiera el tranquilizador espacio de la geometría euclidiana ha sobrevivido; se ha tornado insuficiente ante la complejidad de la dimensión fractal de la naturaleza.

Esta complejidad, dinámica e inestable, queda reflejada en una generación de artistas plásticos digitales, medio programadores, medio ingenieros, infografistas; a caballo entre la expresividad plástica y la tecnología. Porque el mundo ya no es lo que era: la creatividad es un mecanismo evolutivo, el tiempo no es uno sino varios y todo está interconectado por una infinita red de redes; aún así seguiremos luchando por mantener nuestra identidad individual guardada dentro de una membrana flexible como la célula eucariota primigenia; esa identidad que nos define y nos hace interesantes a los ojos de otros con los fluir al modo de Heráclito.

Bibliografía:
Bohm, David y Peat, F. D. “Ciencia, orden y creatividad”. Editorial Kairós.
Mandelbrot, Benoit. “La geometría fractal en la naturaleza”. Editorial Tusquets. Colección Metatemas.
MediaLabMadrid. Centro Cultural Conde Duque. “I Festival Internacional de Arte, Ciencia y Tecnología. Dinámicas fluídas”. Madrid. 2002.

Enlace recomendado:
Entrevista a Lynn Margulis y Dorion Sagan en “Redes”.